This area emphasises the cellular and molecular aspects of pathogenic and symbiotic plant-microbe interactions. The research groups focus on aspects ranging from plant-microbe communication, initiation of defences, metabolic and hormonal adjustments, and the effects of various microbes on plant nutrition, growth and health. Current tools comprise molecular biology, reverse genetics, imaging, analytics, and biochemistry. The training both in practical and theoretical areas will prepare the PhD students for the challenge of the professional world.

PhD students learn how to conduct a research project in an independent manner. They will also learn how to interpret scientific data and to present them. Furthermore, students are expected to be able to think independently about their research topic, to trouble-check their experiments, evaluate their data and put them into a general context, and of course to work in a team. PhD students participate at national and international scientific meetings in order to broaden their knowledge and to establish a scientific and social network.

PhD students in the Department of Biology are remunerated according to standards of the Faculty of Science and Medicine.

To register to the doctoral programme, candidates select a laboratory in which they plan to carry out their PhD (see Contact). They read the relevant publications and then contact the group leader to ask for a possible opening.

Alternatively, candidates look for openings that are posted by the FGLM. The selection procedure is carried out twice a year. It comprises a 15-minute oral presentation and discussions with the various group leaders.

A non-exhaustive list of laboratories includes:

- **Prof. Simon Sprecher**
 - Development and specification of photoreceptor neurons in the larva
 - Genetic control of sensory receptor gene expression switch during metamorphosis
 - Dissecting of the neuronal circuit for vision in the Drosophila larva: identifying neurons and their synaptic connectivity
 - Dissecting of the neuronal circuit for vision in the Drosophila larva: function of neurons in light-guided navigation and visual learning and memory formation
 - Proliferation control of neural cells in development
 - Neuroanatomy of an ant brain: insights into differences of a cast system
 - Super resolution imaging to identify synaptic connections
 - Systems biology of forgetting

- **Prof. Anna Jazwinska**
 - Mechanisms of fin, heart and retina regeneration in zebrafish

- **Prof. Louis-Félix Bersier**
 - Biodiversity and community structure
 - Metacommunities
– Food webs
– Conservation
– Dynamics of multitrrophic systems in mesocosms
– Modelling

Prof. Christian Parisod
– Plant evolutionary ecology
– Range shifts under environmental changes
– Population genomics of adaptation across heterogeneous landscapes
– Adaptive radiation following polyploidy
– Genome evolution and speciation

Prof. Laure Weisskopf
– The role of volatile compounds in microbial interactions
– The impact of the microbiome on plant health
– New strategies for biological control of plant diseases

Prof. Stefanie Ranf
– Sensing and control of microbial colonisation by plant cell-surface immune receptors
– Identification of cell-surface immune receptors and their ligands
– Mechanisms of cell-surface immune receptor signalling
– Role of bacterial lipopolysaccharide cell wall components in plant colonisation
– Translational research on plant disease resistance engineering

Prof. Thomas Flatt
– Experimental evolutionary genetics in Drosophila
– Population genetics and genomics of adaptations
– Evolution of fitness components, life-history evolution
– Climate adaptation along clines / environmental gradients
– The role of chromosomal inversions in adaptation
– Evolution and mechanisms of aging and longevity
– Evolution and mechanisms of body size
– Mechanisms of life-history trade-offs

Prof. Dominique Glauser
– Functional analysis of the *Caenorhabditis elegans* neural circuit
– Molecular and cellular mechanisms of pain
– Identification of evolutionarily conserved pain genes
– Transcriptomics in nociceptor neurons
– *Caenorhabditis elegans* phosphoproteome

In order to be admitted to a doctorate the candidate must have been awarded an academic **bachelor's and master's degree** or an equivalent qualification from a university recognised by the University of Fribourg.

Before applying for a doctorate the candidate must contact a **professor** who would be willing to supervise the thesis work.

There is **no general right** to be admitted to a doctorate.

The respective conditions of admission for each doctoral study programme are reserved.

Contact
Faculty of Science and Medicine
Department of Biology
Chemin du Musée 10
1700 Fribourg
Switzerland
Sabrina Lutz, secretary to the FGLM
sabrina.lutz@unifr.ch
Jörn Dengjel, co-head of the FGLM
joern.dengjel@unifr.ch
http://studies.unifr.ch/go/biology-research

Doc- Postdoc-portal
http://www.unifr.ch/phd

Please refer to the internet link below for a complete an updated list (see Contact).

Studies organisation

Structure of studies

No ECTS credits can be earned.

Doctoral school
http://studies.unifr.ch/go/phd-fglm

Admission